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Abstract. We study the level statistics of parity-selected electronic states of atomic uranium 
(including autoionisation levels), obtained from recent photoionisation experiments. The 
spacings distribution which reflects short-range structure appears to be Poisson but spectral 
fluctuation measures reveal rigidity, and are consistent with a superposition of GOE 

sequences as is typically seen in nuclear spectra. 

There is accumulating evidence that the energy eigenvalue statistics of quantum systems 
have universal fluctuation patterns. The universality classes are presumed to be deter- 
mined by the underlying classical dynamics (Berry 1987, Eckhardt 1988). When this 
dynamics is chaotic, for example, the level correlation properties are modelled by 
random matrix ensembles like the GOE, G U E  and the GSE (Brody et al 1981, Mehta 
1967). Experimentally, coE-type fluctuations are seen in compound-nucleus reson- 
ances (Haq et al 1982, Bohigas et al 1985), rare-earth atomic spectra (Rosenzweig and 
Porter 1960, Camarda and Georgopoulos 1983), as well as in spectra of molecules 
such as Na, (Lombardi et a1 1988), NO, (Zimmerman et al 1988, Haller et a1 1983), 
acetylene (Sundberg et a1 1985, Pique et a1 1987) and methanol (Ferretti et a1 1987). 
Systems with regular underlying classical motion are in a different universality class, 
with uncorrelated level spacings which follow a Poisson distribution (Berry and Tabor 
1977). This has been observed experimentally in lithium Rydberg spectra (Welch et 
al 1989). 

In this paper we analyse the electronic energy levels of 238U using techniques 
deriving from the study of complex systems (Brody et a1 1981) as well as from the 
analysis of chaotic systems (Bohigas et aZ1584, Berry 1987, Yukawa and Ishikawa 1988). 

The data used here were recently obtained by multiphoton ionisation spectroscopy 
(Mago et al 1987a, b, 1988, Suri et a1 1987, Bajaj et a1 1988, Manohar et al 1989). 
The experimental set-up consists of two pulsed tunable dye lasers focused to spatially 
overlap onto an atomic beam of uranium in a quadrupole mass analyser. One laser 
excites uranium atoms from the ground state to an intermediate level and the other is 
scanned to record resonances. Over 800 levels have been located and partially assigned 
(see below). Spectral universality becomes evident in the semiclassical limit and the 
data we examine are particularly suitable in this respect as they correspond to a 
high-energy portion of the spectrum where the level density is high. 

Statistical measures for the analysis of spectra (Brody et a1 1981, Mehta 1967, 
Porter 1965, Yukawa and Ishikawa 1988) are applied after unfolding, i.e. eliminating 
the smooth secular trend N (  E )  which is the integrated density of states for the energy 
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sequence. Here we unfold by a fit to a polynomial function, N (  E )  = Z ai&' with fitting 
parameters ai (Haller et a1 1983). The average level spacing of E , ,  E 2 , .  . . , E N  is then 
1 over the entire energy interval. 

In complex atoms such as 238U, the spin-orbit ( L S )  coupling terms are of the same 
magnitude as the electrostatic attraction. Thus Li and S, are not separately conserved 
and only the total angular momentum J and parity rr are good quantum numbers. In 
order to study level statistics, the energy states need to be properly desymmetrised-here 
it implies that the data must be both J and rr selected (Porter 1965). The present 
photoionisation experiments allow rr selection but the J assignment is uncertain to 
within 1 quantum. The four sets of states analysed here are 214 (odd) levels in energy 
region 34 000-37 000 cm-I, 138 (odd) levels in energy region 37 540-38 420 cm-', 261 
(odd) levels in energy region 39 900-41 600 cm-I, and 221 even-parity autoionisation 
resonances in the range 50 590-51 560 cm-I. In these energy intervals, the fraction of 
levels missing is expected to be small (Chakraborti 1988), and this aids in proper data 
analysis. 

The nearest-neighbour spacing distribution (NNSD) for the four data sets is shown 
in figure 1. In all cases, this distribution is apparently Poisson, but this observation 
is not entirely definitive since some deviation (from exp(-s), the broken curves in 
figure 1) is also evident. It is thus necessary to compute more sensitive probes which 
examine long-range correlations in the data. 
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Figure 1. Histogram of experimentally observed spacing distributions. The broken curve 
is the Poisson and the full curve the prediction of a superposition of GOE distributions 
for the four data sets analysed. 



Spectral rigidity in atomic uranium 2987 

We calculate A which is the average least-squares deviation of the integrated density 
of states of the unfolded levels, N ( E ) ,  from the best straight line fitting it (Dyson and 
Mehta 1963) 

[ N (  E )  - AE - BI2 d E  

= (( 4L) [ N (  E ) ] ’  d E - ($’) [ N (  E ) d E  ] ’ 
-L 

-(:L‘)( 1‘ -L E N ( E )  dE)2)  

In terms of the ordered eigenvalues E , ,  E*, . . . , E,, lying in the interval [ - L ,  L ] ,  we get 
(Bohigas and Giannoni 1975) 

(n2/16)-(:L2)( p = 1  i E ~ ) ’ + ( & ~ ) (  p = 1  i E:) 

We also compute the average number variance, Z2( L )  = (( n - L)’) where n is the number 
of levels in the interval L. The GOE values for all these statistics are well known (Brody 
et al 1981, Mehta 1967) 

pGoE(s) = ( T S / ~ )  e x p ( - d 2 / 4 )  (3a) 

AGOE( L )  = log L/ T’ - 0.006 95 . . . (3b) 

z&,,(L) = 2 ~ : ( ~ ) + ( 1 / ~ ’ ) [ s i ( . r r ~ ) ] ’ -  I / T  Si(.rrL) (3c) 

(for L >  10) 

with 

z:(L)= ( 1 / r 2 ) [ 1 0 g ( 2 r ~ ) +  y + l  - c o s ( ~ . ~ ~ L ) - C ~ ( ~ T L ) ] +  L[I - ( 2 / ~ )  S~(ZTL)I .  

A major problem with the present data is incomplete J assignment, and con- 
sequently, rather than seeing a single GOE, we should expect to observe a superposition 
of appropriately weighted GOE distributions. The number of superposed GOE is 
determined by the number of sequences in the data with relative weight given by the 
empirically determined fractional density. In this case, the pertinent expressions for 
the fluctuation statistics become (Brody et a1 1981) 

and 

Z 2 ( L ) =  c ZiOE(1;L) (4b) 
i = l  

where JI: are the relevant fractions. It is evident from equations (4) that these values 
can be significantly different from the Poissonian value Z i ( L )  = L, and AJL) = L/15, 
if the number of GOE superposed is not too large. On the other hand, the NNSD 
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function of N superposed GOE begins to look quite Poissonian, even when N is around 
3 or 4, since for mixed sequences, the NNSD is given by (Rosenzweig and Porter 1960) 

N 

P”(s)  = n D(fkX){X:INfl2P(f;X)/D(f;X) 
k = l  

+ P : f ; R ( f ; X ) / m f ; x ) l 2  - ~ ; “ [ f ; R ( f ; x ) / D ( J ; x ) l ’ )  ( 4 c )  

( P ( x )  is the NNSD function normalised to unity). For superposed GOE distributions 
(with P ( x )  given by equation ( 3 a ) )  

R ( x ) =  P ( y + x )  dy=exp(-&x2) r 
D ( x )  = 1 - (2/.ir)”2 I,, 

and 
x ( T r / 2 ) ” 2  

exp(-y2/2) dy. 

Near the origin, when D(0) = R ( 0 )  = 1 and P(0)  = 0, equation (3) reduces to P N ( 0 )  = 
1 - X Z 1  ft which for large N is almost 1. The detection of a superposition of a number 
of GOE in NNSD is then difficult, if not impossible, whereas A and z*, which reflect 
long-range rigidity, are much more discerning and sensitive probes. This is amply 
demonstrated in our analysis: the full curves in figure l (a -d)  are the results from 
equation (4c) and this is clearly a more accurate representation of the “ISD. 

As the density of states is very high, some levels may be missing at random, and 
this can be problematic in the case of autoionisation resonances when as much as 20% 
may be missing. If the fraction of missing levels isfm, then and z2 become (Mukamel 
et a1 1984) 

X(L) = (fmL/W + (1 -fmI2L(L/(1 -fm)) ( 5 a )  

Results presented in figures 2 and 3 for the fluctuation measures make it clear that 
these, for the first three data sets at least, match extremely well with the theoretical 
curves for superposition of weighted GOE, obtained via equations (4 -5 ) .  We thus have 
clear experimental evidence for level repulsion in atomic uranium. For the autoionisation 
data, agreement is poorer although the fluctuations are markedly different from Poisson. 
(In addition to missing levels there possibly are spurious assignments as well.) 

Given that even simple dynamical models of atomic systems show widespread 
chaotic motions (Gutzwiller 1971), it seems reasonable to expect that the classical 
dynamics of a complex 92-electron atom at high energies must be dominated by chaos. 
The present study then supports evidence that quantum levels of such systems show 
the universal random-matrix fluctuations. 

In summary, NNSD, A and X2 statistics of parity-selected high-energy sequences of 
atomic uranium have been analysed. Our main observation is that all spectraljuctuation 
measures are fully consistent with those of superposed GOE and are thus similar to 
those of nuclear level data (Haq et a1 1982, Bohigas et a1 1985). 

Our study highlights the inadequacy of examining the NNSD alone, which can be 
misleading as the short-range structure of superposed GOE and Poisson have little 
difference (equation (4c)). However, probes of long-range correlations, the A and Z2 
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Figure 2. As in figure 1 for the d statistic; the experi- 
mentally observed d are denoted by open circles. 

Figure 3. As in figure 1 for the X2 statistic; the 
experimentally observed X2 are denoted by open 
triangles. 

statistics conclusively demonstrate rigidity and we are thus able to unambiguously 
identify the GOE nature of the present data. Such analysis is of considerable importance 
in treating typical experimental data. 
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